A global optimization algorithm for sum of quadratic ratios problem with coefficients

نویسندگان

  • Ying Ji
  • Yijun Li
  • Pengyu Lu
چکیده

In this paper a global optimization algorithm for solving sum of quadratic ratios problem with coefficients and nonconvex quadratic function constraints (NSP ) is proposed. First, the problem NSP is converted into an equivalent sum of linear ratios problem with nonconvex quadratic constraints ( LSP ). Using linearization technique, the linearization relaxation of LSP is obtained. The whole problem is then solvable using the branch and bound method. In the algorithm, lower bounds are derived by solving a sequence of linear lower bounding functions for the objective function and the constraint functions of the problem NSP over the feasible region. The proposed algorithm is convergent to the global minimum through the successive refinement of the solutions of a series of linear programming problems. The numerical examples demonstrate that the proposed algorithm can easily be applied to solve problemNSP . KeywordsQuadratic Ratios Problem, quadratic constraints problem, linearization relaxation, branch and bound, global convergence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Best Coefficients in the Objective Function of a Linear Quadratic Control Problem

Finding the best weights of the state variables and the control variables in the objective function of a linear-quadratic control problem is considered. The weights of these variables are considered as two diagonal matrices with appropriate size and so the objective function of the control problem becomes a function of the diagonal elements of these matrices. The optimization problem which is d...

متن کامل

About One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions

In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...

متن کامل

A New Approach for Solving Interval Quadratic Programming Problem

This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...

متن کامل

Sum-Rate Maximization Based on Power Constraints for Cooperative AF Relay Networks

In this paper, our objective is maximizing total sum-rate subject to power constraints on total relay transmit power or individual relay powers, for amplify-and-forward single-antenna relay-based wireless communication networks. We derive a closed-form solution for the total power constraint optimization problem and show that the individual relay power constraints optimization problem is a quad...

متن کامل

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012